Note: the following are examples of the type of calculations you may be asked to perform in the TE4 narrative paper. This is not a complete exam paper. Calculation questions typically make up 20 out of 40 marks for a paper.

EXAMPLE CALCULATIONS ASSOCIATED WITH THE MEASURMENT OF GASES AND VAPOURS USING INSTRUMENTAL TECHNIQUES

1 To calculate total NOx in mg/m³ at reference conditions given NO and NO₂ measurements in ppm

NO concentration = 34 ppm (dry) NO₂ concentration = 15 ppm (dry) Measured oxygen level = 12% Reference conditions = STP, 15% O₂, dry Atomic weight of N = 14 Atomic weight of O = 16 Molar volume = 22.4 litres

1.1 To calculate the total NOx concentration in ppm

Total NOx concentration = NO concentration + NO₂ concentration

= 34 ppm + 15 ppm = 49 ppm

1.2 To calculate the molecular weight of NOx as NO₂

Molecular weight of NO_2 = atomic weight of N + molecular weight of O_2

= 46

1.3 To convert NOx concentrations in ppm to NO₂ in mg/m³

NOx concentration= 49 ppm Molecular weight of $NO_2 = 46$ Molar volume = 22.4 litres

Concentration in mg/m³ = <u>concentration (ppm) x molecular weight of substance</u> molar volume

= 100.6 mg/m³

1.4 To calculate the concentration of NO₂ at reference conditions

Measured oxygen level = 12% Reference oxygen = 15%

Oxygen correction factor = (21 - reference oxygen)(21 - measured oxygen)

= 0.67

Concentration at reference conditions

- = Concentration as measured x correction factor for oxygen
- $= 100.6 \text{ mg/m}^3 \times 0.67$

 $= 67.4 \text{ mg/m}^3$

2 To calculate concentrations at reference conditions in mg/m³ from analyser results in ppm

Concentration of substance = 120 ppm Measured moisture level = 9% Reference moisture is dry Measured oxygen level = 12.5% (wet) Reference oxygen = 11% Molecular weight of substance = 28 Molar volume = 22.4 litres

(In this example the molecule is CO)

2.1 To convert concentrations in ppm to mg/m³

Concentration of substance = 120 ppm Molecular weight of substance = 28 Molar volume = 22.4 litres

Concentration in mg/m³ = <u>concentration (ppm) x molecular weight of substance</u> molar volume

> = <u>120 ppm x 28</u> 22.4

= 150 mg/m³

2.2 To calculate the concentration of a substance at reference conditions

Moisture correction factor	= <u>100</u> (100 – measured moisture)
	= <u>100</u> (100 – 9)
	= 1.1

(Note that the oxygen was measured on a wet basis and should be corrected to dry conditions)

Oxygen at reference conditions = measured oxygen x correction factor for moisture

	= 12.5% x 1.1
	= 13.8% (dry)
Oxygen correction factor	= <u>(21 – reference oxygen)</u> (21 – measured oxygen, dry)
	= <u>(21 – 11)</u> (21 – 13.8)
	= 1.4

Concentration of substance at reference conditions

- = concentration as measured x correction factor for oxygen x correction factor for moisture
- = 150 mg/m³ x 1.4 x 1.1
- = 231 mg/m³

3 To express analyser readings in ppm (wet) at reference conditions in mg/m³ (dry)

NOx concentration = 80 ppm (wet) Measured moisture level = 10%Molar volume at STP = 22.4 litres Atomic weight of N = 14Atomic weight of O = 16

3.1 To calculate the molecular weight of NO₂

Molecular weight of NO_2 = atomic weight of N + molecular weight of O_2

3.2 To convert concentration in ppm to mg/m³

Concentration in mg/m³ = <u>concentration (ppm) x molecular weight of substance</u> molar volume

= 164 mg/Nm³ (wet)

3.3 To calculate the concentration at reference conditions dry

Moisture correction factor =
$$100 \\ (100 - \text{measured moisture})$$

= $100 \\ 100 - 10$
= 1.1

NO₂ concentration (dry)

= concentration as measured x correction factor for moisture

= 180 mg/Nm³ (dry)

4 To calculate a mass emission rate in kg/h (Example 1)

Volume flow rate at STP (wet) = 43 Nm³/s NO₂ concentration (wet) = 164 mg/m³ Seconds in 1 hour = 3600

4.1 To calculate the volume flow in the stack

Volume flow rate in Nm³/h = volume flow rate in Nm³/s x seconds in 1 hour = 43 Nm³/s x 3600 = 154,800 Nm³/h

4.2 To calculate the mass emission to atmosphere in kg/h

Mass emission rate in kg/h = volume flow rate $m^3/h \ge x \mod 1 x + 10^6$

= 25.4 kg/h

(Note dividing by 1×10^6 converts the result from mg to kg)

5 To calculate a mass emission in kg/h (Example 2)

Average stack gas velocity = 10 m/s Stack diameter = 0.9 m (radius = 0.45 m) Concentration of substance = 150 mg/m³ (measured wet with no correction for oxygen or temperature)

5.1 To calculate the cross section area of the stack

Cross sectional area of stack = πr^2

= 3.14 x 0.45²

= 0.64 m²

5.2 To calculate the volume flow in the stack

Volume flow rate in m ³ /s	= cross section area of stack x average gas velocity
	= 0.64 m ² x 10 m/s
	= 6.4 m ³ /s
Volume flow rate in m ³ /h	= volume flow rate in m ³ /s x seconds in 1 hour
	= 6.4 m ³ /s x 3600
	= 23,040 m³/h

5.3 To calculate the mass emission in kg/h at stack conditions

Mass emission = volume flow rate x concentration of substance 1×10^{6}

> = <u>23,040 m³/h x 150 mg/m³</u> 1 x 10⁶

= 3.46 kg/h

(Note dividing by 1×10^6 converts the result from mg to kg)

6 To convert VOC results from a FID analyser to reference conditions

VOC concentration = 23 mgC/m³ Measured moisture level = 9.5% Reference moisture is dry Measured oxygen level = 13.2% (dry) Reference oxygen = 11%

(Note that the FID analyser measures hot and wet)

Oxygen correction factor	= <u>(21 – reference oxygen)</u> (21 – measured oxygen)
	= <u>(21 – 11)</u> (21 – 13.2)
	= 1.3
Moisture correction factor	= <u>100</u> (100 – measured moisture)
	= <u>100</u> (100 – 9.5)
	= 1.1

Concentration at reference conditions

- = Concentration as measured x correction factor for oxygen x correction factor for moisture
- = 23 mgC/m³ x 1.3 x 1.1
- = 33 mgC/m³

7 To calculate the concentration of VOCs as Carbon (C) as a dry gas and calculate the mass emissions of carbon and toluene from the results provided by a FID analyser

VOC concentration = 185 ppm (propane equivalent C₃ H₈) Measured moisture level = 6.5%Atomic weight of C = 12 Atomic weight of H = 1 Molar volume at STP = 22.4 litres Stack gas flow rate = $0.4 \text{ m}^3/\text{s}$

7.1 To calculate the molecular weight of propane as carbon

= number of carbon atoms in molecule x atomic weight of carbon

= 3 x 12

= 36

7.2 To calculate the concentration of VOC in mgC at STP wet

= <u>concentration in ppm x molecular weight of propane as carbon</u> molar volume

= <u>185 ppm x 36</u> 22.4

= 297 mgC/Nm³

7.3 To calculate the concentration of VOC in mgC as a dry gas

Moisture correction factor	= <u>100</u> (100 – measured moisture)
	$= \frac{100}{100 - 6.5}$
	= 1.07
Concentration of VOC(dry)	= VOC concentration wet x correction factor for moisture
= 297 mgC/Nm ³ x 1.07	
= 318 mgC/Nm ³	

7.4 To calculate the hourly emission rate in gC/h

Stack gas flow rate = 0.4 m³/s Concentration of VOC = 297 mgC/Nm³ (wet)

Volume flow rate in m^3/h = flow rate in m^3/s x seconds in 1 hour

= 0.4 m³/s x 3600

= 1440 m³/h

Mass emission rate g/h = $\frac{\text{volume flow rate } \text{m}^3/\text{h x concentration of substance}}{1000}$

= <u>1440 m³/h x 297 mgC/Nm³</u> 1000

= 428 gC/h

(Note dividing by 1000 converts the result from mg to g)

7.5 To calculate the mass emission as g toluene per hour

Toluene = C_7H_8

Molecular weight of toluene as mgC

= number of carbon atoms in molecule x atomic weight of carbon

= 7 x 12

= 84

Molecular weight of toluene

= (number of carbon atoms x molecular weight of carbon) + (number of hydrogen atoms x atomic weight of hydrogen)

= (7 x 12) + (8 x 1)

= 92

Ratio of molecular weight of toluene to molecular weight of toluene as carbon

 $= \frac{\text{molecular weight of toluene}}{\text{molecular weight of toluene as carbon}}$ $= \frac{92}{84}$ = 1.095

Mass emission expressed as gT/h

= mass emission rate gC/h x toluene to carbon mass ratio

= 428 gC/h x 1.095

= 469 gT/h

8 To calculate an uncertainty budget

The performance characteristics of the analyser are as follows:

Туре

- B Sensitivity to ambient temperature = 1.5% of the certified range per 10K of variation
- B Sensitivity to atmospheric pressure = 0.7% of the certified range per kPa
- B Uncertainty of calibration gas = 1.5%
- A Standard deviation of repeatability at span = 0.9% of the certified range

Certification range of analyser = $0 - 175 \text{ mg/m}^3$

Maximum ambient temperature variation during sampling = $8K (\pm 4K \text{ relative to the temperature value at calibration})^*$

Ambient pressure range during sampling = 98.8 - 101.2 kPa (± 1.2 kPa relative to a pressure value of 100 kPa at calibration)*

Calibration gas concentration = 140 mg/m³

8.1 To calculate the standard uncertainty in mg/m³ associated with the ambient temperature variations

Sensitivity of analyser to ambient temperature variations = 1.5% of the certified range per 10K of variation

Certification range = $0 - 175 \text{ mg/m}^3$

Maximum ambient temperature variation during sampling = ± 4 K

8.2 To calculate the sensitivity per degree of ambient temperature change

= <u>certified range x sensitivity</u> 10 K

= <u>175 mg/m³ x 0.015</u> 10K

= 0.26 mg/m³ per degree

^{*} Note : The exams will not require a calculation of an uncertainty where the variation is not symmetrical about the value at calibration

8.3 To calculate the standard uncertainty associated with the ambient temperature variation

Standard uncertainty Utemp

= sensitivity per degree x variation in ambient temperature
$$\sqrt{3}$$

= 0.26 mg/m³ x 4 K

 $= 0.6 \text{ mg/m}^3$

8.4 To calculate the standard uncertainty in mg/m³ associated with ambient pressure changes

Sensitivity of analyser to ambient pressure variations = 0.7% of the certified range per kPa of pressure change Certification range = 175 mg/m^3 Ambient pressure range during sampling = 98.8 - 101.2 kPa

Variation in ambient pressure	= <u>101.2 - 98.8</u> 2
	= ±1.2 kPa
Sensitivity per kPa of pressure change	= certification range x sensitivity
	= 175 mg/m ³ x 0.007
	= 1.23 mg/m³ per kPa

Standard uncertainty associated with ambient pressure changes U_{apress}

= sensivitity x variation in ambient pressure $\sqrt{3}$ = 1.23 mg/m³ x 1.2 kPa

8.5 To calculate the standard uncertainty of the calibration gas in mg/m³

Uncertainty of calibration gas = 1.5%Calibration gas value = 140 mg/m^3

Standard uncertainty of calibration gas Ucal

√3

= calibrated gas value x uncertainty of calibration gas
$$\sqrt{3}$$

 $= \frac{140 \text{ mg/m}^3 \text{ x } 0.015}{\sqrt{3}}$

= 1.21 mg/m³

8.6 To calculate the standard deviation of repeatability at span level in mg/m³

Standard deviation of repeatability at span level = 0.9% of the certified range (note that this is a 'Type A' uncertainty and does not need to be divided by $\sqrt{3}$) Certified range of analyser = 175 mg/m³

Standard deviation of repeatability at span U_{s,r}

= certified range x standard deviation of repeatability at span

 $= 175 \text{ mg/m}^3 \times 0.9\%$

 $= 1.58 \text{ mg/m}^3$

8.7 To calculate the combined standard uncertainty

Combined uncertainty	$= \sqrt{U_{temp}^2 + U_{apress}^2 + U_{cal}^2 + U_{s,r}^2}$
	$= \sqrt{0.6^2 + 0.85^2 + 1.21^2 + 1.58^2}$
	= $\sqrt{0.36 + 0.72 + 1.46 + 2.5}$
	= 2.25 mg/m ³
Expanded uncertainty	= combined uncertainty x 1.96
	= 2.25 mg/m ³ x 1.96
	= 4.4 mg/m ³