Note: the following are examples of the type of calculations you may be asked to perform in the TE3 narrative paper. Please mote this is not a complete exam paper. Calculation questions typically make up 20 out of the 40 marks for the paper.

EXAMPLE CALCULATIONS ASSOCIATED WITH THE MEASURMENT OF GASES AND VAPOURS USING MANUAL TECHNIQUES

1) To convert concentrations in ppm to mg/m³

CO concentration = 100 ppm Molecular weight of CO = 28 Molar volume = 22.4 litres

Concentration in $mg/m^3 = \frac{\text{concentration (ppm)} \times \text{molecular weight of substance}}{\text{molar volume}}$

 $= 100 \text{ ppm } \times 28$

 $= 125 \text{ mg/m}^3$

2) To convert concentrations in mg/m³ to ppm

 SO_2 concentration = 120 mg/m³ Molecular weight of SO_2 = 64.07 Molar volume = 22.4 litres

Concentration in ppm = $\frac{\text{concentration (mg/m}^3) \times \text{molar volume}}{\text{concentration (mg/m}^3) \times \text{molar volume}}$

molecular weight of substance

 $= 120 \text{ mg/m}^3 \text{ x } 22.4$ 64.07

= 42 ppm

3) To express total organic compounds (TOC) as carbon

Toluene concentration = 50 mg/m³ Molecular weight of toluene C₇H₈ = 92 Molecular weight of carbon = 12

TOC expressed as mg of carbon

- = concentration of TOC compound x mass of carbon in the molecule molecular weight of molecule
- $= 50 \text{ mg/m}^3 \text{ x} (7 \text{ x} 12 / 92)$
- $= 45.7 \text{ mgC/m}^3$

4) To express fluoride concentrations as hydrogen fluoride

Fluoride concentration = 65 μ gF/ml Molecular weight of fluoride, F = 19 Molecular weight of hydrogen, H = 1 Molecular weight of hydrogen fluoride HF = molecular weights of fluoride + hydrogen = 19 + 1 = 20

Fluoride to hydrogen fluoride correction factor = molecular weight of HF molecular weight of F

= <u>20</u>

= 1.053

Fluoride expressed as hydrogen fluoride = fluoride concentration x 1.053

 $= 65 \mu gF/ml \times 1.053$

= $68.4 \mu gHF/ml$

5) To calculate the minimum sampling time required

Concentration of compound in stack gas = 2 mg/m^3 (2 $\mu\text{g/l}$) Sampling rate = 2 l/minImpinger solution volume = 250 mlLimit of detection (LOD) quoted by analytical laboratory = $0.5 \mu\text{g/ml}$

Rate of collection by sampling equipment

- = concentration of compound in stack gas x sampling rate
- $= 2 \mu g/l \times 2 l/min$
- = $4 \mu g/min$

Target mass of compound required

- = impinger solution volume x LOD
- $= 250 \text{ ml } \times 0.5 \mu\text{g/ml}$
- $= 125 \mu g$

Minimum sampling time required

- = <u>target mass of compound</u> rate of collection
- $= 125 \mu g$
 - 4 μg/min
- = 31 minutes

6) To calculate the percentage by volume of moisture in a duct

In this example it is assumed that moisture is collected in accordance with BS EN 14790:2005. The sampling equipment utilises two impingers containing water, and one impinger containing silica gel.

Initial meter reading = 6.291 m^3 Final meter reading = 6.351 m^3 Molecular weight of moisture, $H_2O = 18$ Molar volume at STP = 22.4 litres Mass of moisture collected in impinger 1 = 3.2gMass of moisture collected in impinger 2 = 1.3gMass of moisture collected in silica gel = 0.7gDry gas meter pressure = 100.7 kPaDry gas meter temperature = $16^{\circ}C$ Standard temperature = 273 KStandard pressure = 101.3 kPa

6.1 Calculate the sample volume at the dry gas meter

Initial meter reading = 6.291 m³ Final meter reading = 6.351 m³

Sample volume at dry gas meter = final reading - initial reading

$$= 6.351 \text{ m}^3 - 6.291 \text{ m}^3$$

$$= 0.06 \,\mathrm{m}^3 \,\,(60 \,\mathrm{litres})$$

6.2 Correct the sampled gas volume to standard conditions

Dry gas meter sampled volume corrected to STP

$$= 60 \text{ litres } \times 0.94 \times 0.99$$

= 55.8 litres

6.3 Calculate the total mass of moisture collected

Total mass of moisture = mass in impinger 1 + mass in impinger 2 + mass in silica gel

$$= 3.2 g + 1.3 g + 0.7 g$$

$$= 5.2 g$$

6.4 Calculate the volume of collected moisture at STP

Volume of collected moisture = total moisture collected x molar volume molecular weight of H₂O

$$= 5.2 g \times 22.4$$

= 6.47 litres

6.5 Calculate the percentage by volume of moisture

Percentage of moisture = volume of moisture collected x 100 total volume of dry gas and moisture

= 10.4 %

July 18 Sira Certification Service Page 5 of 11

7. To calculate the concentration of a substance in a stack gas from the analytical laboratory results

Analysis of solution for impinger 1 = 23.6 μ g/ml Analysis of solution for impinger 2 = 0.8 μ g/ml Volume of sample solution from impinger 1 = 260 ml Volume of sample solution from impinger 2 = 240 ml Sampled gas volume at STP = 350 litres

7.1 Calculate the total mass of the substance recovered

Mass of substance from impinger 1

- = volume of sample solution from impinger 1 x concentration of substance
- $= 260 \text{ ml } \times 23.6 \text{ } \mu\text{g/ml}$
- $= 6136 \mu g$

Mass of substance from impinger 2

- = volume of sample solution from impinger 2 x concentration of substance
- $= 240 \text{ ml } \times 0.8 \mu\text{g/ml}$
- $= 192 \mu g$

Total mass of substance collected in mg

- = mass of substance from impinger 1 + mass of substance from impinger 2 1000
- = <u>6136 μg + 192 μg</u> 1000
- $= 6.33 \, \text{mg}$

7.2 Calculate the concentration of the substance in the stack

Concentration of substance in the stack = total mass of substance collected x 1000 sampled gas volume at STP

 $= 6.33 \, \text{mg} \, \text{x} \, 1000$

350 litres

 $= 18.1 \text{ mg/m}^3$

Note: multiply by 1000 to convert from litres to m^3 , as $1m^3 = 1000$ litres

7.3 Calculate and assess the impinger absorption solution collection efficiency

Mass of substance from impinger 1 = 6.14 mg Mass of substance from impinger 2 = 0.19 mg

Total mass of substance collected

- = mass of substance from impinger 1 + mass of substance from impinger 2
- = 6.14 mg + 0.19 mg
- $= 6.33 \, \text{mg}$

Impinger efficiency

- = <u>mass of substance from impinger 1</u> x 100 total mass of substance from both impingers
- $= 6.14 \text{ mg} \times 100$ 6.33 mg
- = 97%

The impinger efficiency is acceptable as it is greater than 95%

8. To calculate mass emissions to atmosphere

Total mass of substance collected during sampling = 730 μ g Sample gas volume at STP, dry = 8.5 litres Stack cross section area, CSA = 1.1 m² Average stack gas velocity = 10.4 m/s Temperature of stack gas = 62 °C Pressure in stack = 101.3 kPa Moisture content of stack gas = 7%

8.1 Calculate the concentration of the substance at STP, dry

Concentration of substance at STP, dry

= <u>mass of substance collected</u> sample gas volume at STP, dry

= <u>730 μg</u> 8.5 litres

 $= 85.9 \,\mu g/l \,(85.9 \,mg/m^3)$

8.2 Calculate the concentration of the substance at stack gas conditions

Stack temperature is 62 °C Stack pressure is 101.3 kPa

Stack moisture is 7%

Reference pressure is 101.3 kPa

Reference moisture is dry

Temperature correction factor = <u>standard temperature</u>

stack temperature

= <u>273 K</u> 273 + 62 K

= 0.815

Moisture correction factor = (100 - stack moisture)100

= <u>(100 – 7)</u>

= 0.93

A correction for pressure is not required in this situation as the stack pressure is the same as the reference pressure.

Concentration of substance at stack conditions

- Concentration as measured x correction factor for temperature x correction factor for moisture
- $= 85.9 \text{ mg/m}^3 \times 0.815 \times 0.93$
- $= 65.1 \text{ mg/m}^3$

8.3 Calculate the volume flow in the stack

Average stack gas velocity = 10.4 m/s Stack cross section area, CSA = 1.1 m² Seconds in 1 hour = 3600

Volume flow rate in $m^3/s = average gas velocity in m/s x stack cross section area$

$$= 10.4 \text{ m/s} \times 1.1 \text{ m}^2$$

$$= 11.44 \text{ m}^3/\text{s}$$

Volume flow rate in $m^3/h = volume$ flow rate in $m^3/s \times seconds$ in 1 hour

$$= 11.4 \text{ m}^3/\text{s} \times 3600$$

$$= 41184 \text{ m}^3/\text{hr}$$

8.4 Calculate the mass emission to atmosphere in g/hr

Mass emission rate = $\frac{\text{volume flow rate in the stack } x \text{ concentration of substance}}{1000}$

 $= 41184 \text{ m}^3/\text{hr} \times 65.1 \text{ mg/m}^3$

= <u>2681078 mg/hr</u> 1000

 $= 2681 \, g/hr$

9. To calculate the sampling time for a method using adsorption tubes

Preferred sampling rate = 0.4 l/min

Concentration of substance in the stack = 17 mg/m^3 ($17 \mu \text{g/l}$)

Detection limit = $1.3 \mu g/I$

Mass of collected sample to be 50 times the limit of detection limit (LOD)

Mass of substance required in sample $= 50 \times LOD$

 $= 50 \times 1.3 \mu g/I$

 $= 65 \mu g$

Sample volume required = mass of substance required in sample

concentration of substance in the stack

= <u>65 μg</u> 17 μg/l

= 3.8 litres

Minimum sampling time required = sample volume required

sampling rate

= <u>3.8 litres</u> 0.4 l/min

= 9.5 minutes

10. To calculate the minimum detectable concentration in the stack at the given sampling rate.

Actual sampling time = 15 minutes Sampling rate = 0.4 l/min Detection limit = 1 μg

Sampling volume achieved in 15 minutes = sampling time x sampling rate

= 15 minutes \times 0.4 l/min

= 6 litres

Detection limit = 1 μ g (0.001 mg) Sampling volume = 6 litres (0.006 m³)

Minimum detectable concentration = 1 μ g in 6 litres

Minimum detectable concentration per m³ = $1 \mu g$ 6 litres

 $= 0.17 \mu g/l$

 $= 0.17 \text{ mg/m}^3$