Note: the following are examples of the type of calculations you may be asked to perform in the TE3 narrative paper. This is not a complete exam paper. Calculation questions typically make up 20 out of the 40 marks for a paper.

EXAMPLE CALCULATIONS ASSOCIATED WITH THE MEASURMENT OF GASES AND VAPOURS USING MANUAL TECHNIQUES

1) To convert concentrations in ppm to mg/m³

CO concentration = 100 ppmMolecular weight of CO = 28Molar volume = 22.4 litres

Concentration in $mg/m^3 = concentration (ppm) \times molecular weight of substance molar volume$

 $= 125 \text{ mg/m}^3$

2) To convert concentrations in mg/m³ to ppm

 SO_2 concentration = 120 mg/m³ Molecular weight of SO_2 = 64.07 Molar volume = 22.4 litres

Concentration in ppm = $\frac{\text{concentration (mg/m^3) x molar volume}}{\text{molecular weight of substance}}$

$$= \frac{120 \text{ mg/m}^3 \text{ x } 22.4}{64.07}$$

= 42 ppm

3) To express total organic compounds (TOC) as carbon

Toluene concentration = 50 mg/m^3 Molecular weight of toluene C₇H₈ = 92Molecular weight of carbon = 12

TOC expressed as mg of carbon

- = concentration of TOC compound x mass of carbon in the molecule molecular weight of molecule
- $= 50 \text{ mg/m}^3 \text{ x} (7 \text{ x} 12 / 92)$
- $= 45.7 \text{ mgC/m}^3$

4) To express fluoride concentrations as hydrogen fluoride

Fluoride concentration = 65 µgF/ml Molecular weight of fluoride, F = 19 Molecular weight of hydrogen, H = 1 Molecular weight of hydrogen fluoride HF = molecular weights of fluoride + hydrogen = 19 + 1 = 20 Fluoride to hydrogen fluoride correction factor = molecular weight of HF molecular weight of F = $\frac{20}{19}$ = 1.053 Fluoride expressed as hydrogen fluoride = fluoride concentration x 1.053

= 65 µgF/ml x 1.053

= 68.4 μgHF/ml

5) To calculate the minimum sampling time required

Concentration of compound in stack gas = 2 mg/m^3 (2 µg/l) Sampling rate = 2 l/min Impinger solution volume = 250 ml Limit of detection (LOD) quoted by analytical laboratory = 0.5 µg/ml

Rate of collection by sampling equipment

- = concentration of compound in stack gas x sampling rate
- = $2 \mu g/l \times 2 l/min$
- = 4 μ g/min

Target mass of compound required

- = impinger solution volume x LOD
- = 250 ml x 0.5 μg/ml
- = 125 μg

Minimum sampling time required

- = <u>target mass of compound</u> rate of collection
- = <u>125 μg</u> 4 μg/min
- = 31 minutes

6) To calculate the percentage by volume of moisture in a stack

In this example it is assumed that moisture is collected in accordance with BS EN 14790:2005. The sampling equipment utilises two impingers containing water, and one impinger containing silica gel.

Initial meter reading = 6.291 m^3 Final meter reading = 6.351 m^3 Molecular weight of moisture, H₂O = 18 Molar volume at STP = 22.4 litres Mass of moisture collected in impinger 1 = 3.2g Mass of moisture collected in impinger 2 = 1.3g Mass of moisture collected in silica gel = 0.7g Dry gas meter pressure = 100.7 kPa Dry gas meter temperature = 16° C Standard temperature = 273 KStandard pressure = 101.3 kPa

6.1 Calculate the sample volume at the dry gas meter

Initial meter reading = 6.291 m^3 Final meter reading = 6.351 m^3

Sample volume at dry gas meter = final reading – initial reading

=
$$6.351 \text{ m}^3 - 6.291 \text{ m}^3$$

= 0.06 m^3 (60 litres)

6.2 Correct the sampled gas volume to standard conditions

Dry gas meter sampled volume corrected to STP

= sampled volume x <u>standard temperature</u> x <u>dry gas meter pressure</u> temperature at dry gas meter standard pressure
= 60 litres x <u>273 K</u> x <u>100.7 kPa</u> 273 + 16 K 101.3 kPa
= 60 litres x 0.94 x 0.99
= 55.8 litres

6.3 Calculate the total mass of moisture collected

Total mass of moisture = mass in impinger 1 + mass in impinger 2 + mass in silica gel

6.4 Calculate the volume of collected moisture at STP

Volume of collected moisture	= total moisture collected x molar volume
	molecular weight of H ₂ O

6.5 Calculate the percentage by volume of moisture

Percentage of moisture = <u>volume of moisture collected</u> x 100 total volume of dry gas and moisture

 $= \frac{6.47 \text{ litres}}{55.8 + 6.47 \text{ litres}} \times 100$

= 10.4 %

7) To calculate the concentration of a substance in a stack gas from the analytical laboratory results

Analysis of solution for impinger $1 = 23.6 \mu g/ml$ Analysis of solution for impinger $2 = 0.8 \mu g/ml$ Volume of sample solution from impinger 1 = 260 mlVolume of sample solution from impinger 2 = 240 mlSampled gas volume at STP = 350 litres

7.1 Calculate the total mass of the substance recovered

Mass of substance from impinger 1

= volume of sample solution from impinger 1 \times concentration of substance

= 260 ml x 23.6 µg/ml

= 6136 µg

Mass of substance from impinger 2

= volume of sample solution from impinger 2 \times concentration of substance

= 240 ml x 0.8 µg/ml

= 192 µg

Total mass of substance collected in mg

= mass of substance from impinger 1 + mass of substance from impinger 2 1000

= <u>6136 μg + 192 μg</u> 1000

= 6.33 mg

7.2 Calculate the concentration of the substance in the stack

Concentration of substance in the stack = <u>total mass of substance collected</u> x 1000 sampled gas volume at STP

> = <u>6.33 mg</u> x 1000 350 litres

 $= 18.1 \text{ mg/m}^3$

Note: multiply by 1000 to convert from litres to m^3 , as $1m^3 = 1000$ litres

7.3 Calculate and assess the impinger absorption solution collection efficiency

Mass of substance from impinger 1 = 6.14 mg Mass of substance from impinger 2 = 0.19 mg

Total mass of substance collected

= mass of substance from impinger 1 + mass of substance from impinger 2

= 6.14 mg + 0.19 mg

= 6.33 mg

Impinger efficiency

= <u>6.14 mg</u> x 100 6.33 mg

= 97%

The impinger efficiency is acceptable as it is greater than 95%

8) To calculate mass emissions to atmosphere

Total mass of substance collected during sampling = 730 μ g Sample gas volume at STP, dry = 8.5 litres Stack cross section area, CSA = 1.1 m² Average stack gas velocity = 10.4 m/s Temperature of stack gas = 62 °C Pressure in stack = 101.3 kPa Moisture content of stack gas = 7%

8.1 Calculate the concentration of the substance at STP, dry

Concentration of substance at STP, dry

- = <u>mass of substance collected</u> sample gas volume at STP, dry
- = <u>730 μg</u> 8.5 litres
- $= 85.9 \,\mu g/l \ (85.9 \,m g/m^3)$

8.2 Calculate the concentration of the substance at stack gas conditions

Stack temperature is 62 °C Stack pressure is 101.3 kPa Stack moisture is 7%	Dry gas meter temperature is 10 °C (273K) Reference pressure is 101.3 kPa Reference moisture is dry
Temperature correction factor	= standard temperature stack temperature
	$= \frac{273 \text{ K}}{273 + 62 \text{ K}}$
	= 0.815
Moisture correction factor	= <u>(100 – stack moisture)</u> 100
	$= \frac{(100-7)}{100}$
	= 0.93

A correction for pressure is not required in this situation as the stack pressure is the same as the reference pressure.

Concentration of substance at stack conditions

- Concentration as measured x correction factor for temperature x correction factor for moisture
- $= 85.9 \text{ mg/m}^3 \times 0.815 \times 0.93$
- $= 65.1 \text{ mg/m}^3$

8.3 Calculate the volume flow in the stack

Average stack gas velocity = 10.4 m/sStack cross section area, CSA = 1.1 m^2 Seconds in 1 hour = 3600

Volume flow rate in m^3/s = average gas velocity in m/s x stack cross section area

=
$$10.4 \text{ m/s} \times 1.1 \text{ m}^2$$

= $11.44 \text{ m}^3/\text{s}$

Volume flow rate in $m^3/h =$ volume flow rate in $m^3/s \times seconds$ in 1 hour

=
$$11.4 \text{ m}^3/\text{s} \times 3600$$

= $41184 \text{ m}^3/\text{hr}$

8.4 Calculate the mass emission to atmosphere in g/hr

Mass emission rate	= volume flow rate in the stack x concentration of substance 1000
	$= 41184 \text{ m}^3/\text{hr} \times 65.1 \text{ mg/m}^3$
	= <u>2681078 mg/hr</u> 1000
	= 2681 g/hr

9) To calculate the sampling time for a method using adsorption tubes

Preferred sampling rate = 0.4 l/min Concentration of substance in the stack = 17 mg/m ³ (17 μ g/l) Detection limit = 1.3 μ g/l Mass of collected sample to be 50 times the limit of detection limit (LOD)		
Mass of substance required in sample	= 50 x LOD	
	= 50 x 1.3 μg/l	
	= 65 μg	
Sample volume required	= <u>mass of substance required in sample</u> concentration of substance in the stack	
	= <u>65 μα</u> 17 μg/l	
	= 3.8 litres	
Minimum sampling time required	= <u>sample volume required</u> sampling rate	
	= <u>3.8 litres</u> 0.4 l/min	
	= 9.5 minutes	

10) To calculate the limit of detection expressed in terms of the concentration of the substance in the stack

Actual sampling time = 15 minutes Sampling rate = 0.4 l/min Concentration of substance in the stack = 17 mg/m³ (17 μ g/l) Detection limit = 1 μ g

Sampling volume achieved in 15 minutes = sampling time x sampling rate

= 15 minutes \times 0.4 l/min

= 6 litres

Mass of substance collected

- = concentration of substance in the stack x sampled volume
- = $17 \mu g/l \times 6$ litres
- = 102 μg

Mass of substance collected as a multiple of the LOD

 mass of substance collected LOD
 102 μg 1 μg
 102

Relative limit of detection expressed in terms of the concentration of the substance in the stack

= <u>concentration of substance in the stack</u> substance as a multiple of the LOD

= <u>17 μg/l</u> 102

 $= 0.17 \,\mu\text{g/l} \,(0.17 \,\text{mg/m}^3)$